Motor Torque Equation:
| From: | To: | 
Motor torque calculation determines the rotational force required from a motor to overcome inertia and external loads. It's essential for proper motor selection and system design in mechanical applications.
The calculator uses the motor torque equation:
Where:
Explanation: The equation calculates the torque needed to accelerate rotational masses (inertia component) plus any additional torque required to overcome external loads.
Details: Accurate torque calculation ensures motors are properly sized for applications, prevents motor overload, improves system efficiency, and extends equipment lifespan.
Tips: Enter moment of inertia in kg m², angular acceleration in rad/s², and load torque in Nm. All values must be non-negative numbers.
                    Q1: What is moment of inertia?
                    A: Moment of inertia measures an object's resistance to rotational acceleration. It depends on the mass distribution relative to the axis of rotation.
                
                    Q2: How is angular acceleration measured?
                    A: Angular acceleration is the rate of change of angular velocity, typically measured in radians per second squared (rad/s²).
                
                    Q3: What factors affect load torque?
                    A: Load torque includes friction, gravitational forces, cutting forces (in machining), and any other external resistive torques.
                
                    Q4: Should safety factors be applied?
                    A: Yes, it's recommended to apply appropriate safety factors (typically 1.5-2.0) to calculated torque values for reliable operation.
                
                    Q5: How does this apply to motor selection?
                    A: The calculated torque helps determine the required motor size, ensuring it can provide sufficient torque without stalling or overheating.